

## Zero-power resistance (R<sub>T</sub>)

The zero-power resistance is the resistance value measured under specified temperature conditions, and the self-heating during measurement can be negligible.

## • Resistance-temperature characteristic (R-T curve, see Fig. 4)

R-T curve is relationship of zero-power resistance and temperature of CPTC thermistor at specified direct voltage. It is a curve drawn on a semi-logarithmic coordinate graph (Temperature (T) is on X-axis and resistance (R) is on Y axis).





 $\label{eq:R25} \begin{array}{l} \mbox{R}_{25}\mbox{:} \mbox{Zero power resistance at $25^{\circ}$C} \\ \mbox{R}_{min}\mbox{:} \mbox{Minimum resistance} \\ \mbox{T}_{Rmin}\mbox{:} \mbox{Temperature corresponding to minimum resistance} \\ \mbox{T}_{c}\mbox{:} \mbox{Switch resistance (RTc=2xRmin)} \\ \mbox{R}_{max}\mbox{:} \mbox{Maximum resistance} \\ \mbox{T}_{Rmax}\mbox{:} \mbox{Temperature corresponding to maximum resistance} \end{array}$ 

Minimum resistance (R<sub>min</sub>)

Minimum resistance is the lowest resistance on R-T curve and corresponds to  $T_{Rmin}$ , temperature of minimum resistance. (see Fig. 4)

# Temperature of minimum resistance (T<sub>Rmin</sub>)

 $T_{Rmin}$  is temperature that corresponds to  $R_{min}$  on R-T curve.

## Curie temperature or switch temperature (T<sub>c</sub>)

Cuire temperature is temperature that corresponds to  $R_{Tc} = 2 \times R_{min.}$  When the temperature is reached, a step-like increase of CPTC thermistor resistance is started.



## • Voltage-current characteristic (V- I curve, see Fig. 5)

V-I curve is relationship of applied AC or DC voltage at thermistor terminations and steady-state current when thermal equilibrium is reached in still air at 25°C.





# Rated voltage (V<sub>R</sub>)

Rated voltage typically equals to voltage of supply source.

## Maximum operating voltage (V<sub>max</sub>)

Maximum operating voltage is maximum AC or DC voltage that continuously applies to thermistor and does not exceed maximum overload current.

# Maximum link voltage (V<sub>Lmax</sub>)

Maximum link voltage is maximum DC voltage of filter capacitor in inrush current limiting application.

## Withstanding Voltage (V<sub>w</sub>)

Maximum voltage that CPTC thermistor can withstand under specific conditions.

## • Maximum operating current (I<sub>max</sub>)

Maximum operating current is maximum permissible current before reaching curie temperature.

# • Tripping current (I<sub>T</sub>)

Tripping current is the lowest current that causes thermistor to trip to high resistance at specified temperature (preferably  $25^{\circ}$ C).

# • Maximum non-tripping current (I<sub>N</sub>)

Maximum non-tripping current is maximum current that thermistor keeps definitely in its low resistance condition at a specified ambient temperature (preferably  $25^{\circ}$ ).

# Ceramic PTC Thermistor: Glossary



# Heat capacity(C<sub>th</sub>)

Heat capacity is energy (in J) for increasing 1K of thermistor's body temperature.

## • Power consumption (P)

Power is measured with rated voltage and Imax after CPTC thermistor trips.

## • Operating time(t<sub>o</sub>)

Operating time is the time for current of CPTC thermistor to change to 0.5 times of I<sub>in</sub> after tripping is occurred.

#### Recovery time(t<sub>r</sub>)

Recovery time is the time which the resistance value of PTC recovers to 2 times of R25.

## Responding time(t<sub>a</sub>)

Responding time is the time that A current takes to reduce to B current after CPTC thermistor trips. (A and B currents are specified in specifications.)

#### • Surface temperature (T<sub>sf</sub>)

Surface temperature is temperature of CPTC thermistor's surface when the component is operated at specified voltage and ambient environment is in a state of thermal equilibrium for a certain period of time. Typical ambient temperature is  $25^{\circ}$ C.

## • Sensing temperature (T<sub>s</sub>)

Sensing temperature is temperature related to a defined resistance value in the steep region of R-T curve.